76 research outputs found

    Role and Interpretation of Antifungal Susceptibility Testing for the Management of Invasive Fungal Infections.

    Get PDF
    Invasive fungal infections (IFIs) are associated with high mortality rates and timely appropriate antifungal therapy is essential for good outcomes. Emerging antifungal resistance among Candida and Aspergillus spp., the major causes of IFI, is concerning and has led to the increasing incorporation of in vitro antifungal susceptibility testing (AST) to guide clinical decisions. However, the interpretation of AST results and their contribution to management of IFIs remains a matter of debate. Specifically, the utility of AST is limited by the delay in obtaining results and the lack of pharmacodynamic correlation between minimal inhibitory concentration (MIC) values and clinical outcome, particularly for molds. Clinical breakpoints for Candida spp. have been substantially revised over time and appear to be reliable for the detection of azole and echinocandin resistance and for outcome prediction, especially for non-neutropenic patients with candidemia. However, data are lacking for neutropenic patients with invasive candidiasis and some non-albicans Candida spp. (notably emerging Candida auris). For Aspergillus spp., AST is not routinely performed, but may be indicated according to the epidemiological context in the setting of emerging azole resistance among A. fumigatus. For non-Aspergillus molds (e.g., Mucorales, Fusarium or Scedosporium spp.), AST is not routinely recommended as interpretive criteria are lacking and many confounders, mainly host factors, seem to play a predominant role in responses to antifungal therapy. This review provides an overview of the pre-clinical and clinical pharmacodynamic data, which constitute the rationale for the use and interpretation of AST testing of yeasts and molds in clinical practice

    Voriconazole-associated zygomycosis: a significant consequence of evolving antifungal prophylaxis and immunosuppression practices?

    Get PDF
    AbstractMucormycosis (zygomycosis) is an uncommon infection that afflicts severely immunocompromised patients and those with poorly controlled diabetes mellitus. A recent increase in the incidence of mucormycosis at many transplant centres has been linked to the introduction and widespread use of voriconazole prophylaxis in these high-risk populations. However, it is not known if this association reflects a true epidemiological link or represents a marker of changing immunosuppression occurring in parallel with the evolution of transplant practices and immunosuppression strategies

    Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.

    Get PDF
    The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy

    TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26.

    Get PDF
    Interleukin 17-producing helper T cells (TH17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death

    Corrigendum: Azole-resistance in aspergillus terreusand related species: An emerging problem or a rare phenomenon? (Frontiers in Microbiology (2018) 9 (516) DOI: 10.3389/fmicb.2018.00516)

    Get PDF
    Raquel Sabino was not included as an author in the published article. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated. © 2019 Zoran, Sartori, Sappl, Aigner, Sánchez-Reus, Rezusta, Chowdhary, Taj-Aldeen, Arendrup, Oliveri, Kontoyiannis, Alastruey-Izquierdo, Lagrou, Lo Cascio, Meis, Buzina, Farina, Drogari-Apiranthitou, Grancini, Tortorano, Willinger, Hamprecht, Johnson, Klingspor, Arsic-Arsenijevic, Cornely, Meletiadis, Prammer, Tullio, Vehreschild, Trovato, Lewis, Segal, Rath, Hamal, Rodriguez-Iglesias, Roilides, Arikan-Akdagli, Chakrabarti, Colombo, Fernández, Martin-Gomez, Badali, Petrikkos, Klimko, Heimann, Uzun, Roudbary, de la Fuente, Houbraken, Risslegger, Sabino, Lass-Flörl and Lackner

    Azole-resistance in Aspergillus terreus and related species: An emerging problem or a rare Phenomenon?

    Get PDF
    Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8), followed by A. citrinoterreus (8.4), A. hortai (2.6), A. alabamensis (1.6), A. neoafricanus (0.2), and A. floccosus (0.2). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4 of all tested isolates, 6.2 of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0 in the Czech Republic, Greece, and Turkey to 13.7 in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4 of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10, resistance against voriconazole was rare and absent for itraconazole. © 2018 Zoran, Sartori, Sappl, Aigner, Sánchez-Reus, Rezusta, Chowdhary, Taj-Aldeen, Arendrup, Oliveri, Kontoyiannis, Alastruey-Izquierdo, Lagrou, Cascio, Meis, Buzina, Farina, Drogari-Apiranthitou, Grancini, Tortorano, Willinger, Hamprecht, Johnson, Klingspor, Arsic-Arsenijevic, Cornely, Meletiadis, Prammer, Tullio, Vehreschild, Trovato, Lewis, Segal, Rath, Hamal, Rodriguez-Iglesias, Roilides, Arikan-Akdagli, Chakrabarti, Colombo, Fernández, Martin-Gomez, Badali, Petrikkos, Klimko, Heimann, Uzun, Roudbary, de la Fuente, Houbraken, Risslegger, Lass-Flörl and Lackner

    Azole-resistance in Aspergillus terreus and related species: An emerging problem or a rare Phenomenon?

    Get PDF
    Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8), followed by A. citrinoterreus (8.4), A. hortai (2.6), A. alabamensis (1.6), A. neoafricanus (0.2), and A. floccosus (0.2). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4 of all tested isolates, 6.2 of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0 in the Czech Republic, Greece, and Turkey to 13.7 in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4 of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10, resistance against voriconazole was rare and absent for itraconazole. © 2018 Zoran, Sartori, Sappl, Aigner, Sánchez-Reus, Rezusta, Chowdhary, Taj-Aldeen, Arendrup, Oliveri, Kontoyiannis, Alastruey-Izquierdo, Lagrou, Cascio, Meis, Buzina, Farina, Drogari-Apiranthitou, Grancini, Tortorano, Willinger, Hamprecht, Johnson, Klingspor, Arsic-Arsenijevic, Cornely, Meletiadis, Prammer, Tullio, Vehreschild, Trovato, Lewis, Segal, Rath, Hamal, Rodriguez-Iglesias, Roilides, Arikan-Akdagli, Chakrabarti, Colombo, Fernández, Martin-Gomez, Badali, Petrikkos, Klimko, Heimann, Uzun, Roudbary, de la Fuente, Houbraken, Risslegger, Lass-Flörl and Lackner
    corecore